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Abstract: This study aims to quantify the synergistic effect of Ni2+ and Mn2+ ions on the capacitive
performance of oxide, hydroxide and phosphate electrodes in alkaline electrolytes. Three types of
phases containing both nickel and manganese in a ratio of one-to-one were selected due to their
stability in alkaline media: oxides with ilmenite and spinel structures (NiMnO3 and Ni1.5Mn1.5O4);
hydroxides with layered structures (β-Ni1/2Mn1/2(OH)2); and phosphates with olivine and maricite
structures (LiNi1/2Mn1/2PO4 and NaNi1/2Mn1/2PO4). In the mixed hydroxides and phosphates,
Ni2+ and Mn2+ ions randomly occupied one crystallographic site, whereas in the ilmenite oxide,
a common face was shared by the Ni2+ and Mn4+ ions. The electrochemical parameters of the
Ni–Mn compositions were evaluated in asymmetric hybrid supercapacitor cells working with al-
kaline electrolytes and activated carbon as a negative electrode. A comparative analysis of oxides,
hydroxides and phosphates enabled us to differentiate the effects of nickel and manganese ions,
structures and morphologies on their capacitive performance. Thus, the best performed electrode
was predicted. The electrode composition should simultaneously contain Ni and Mn ions, and their
morphologies should comprise spherical aggregates. This was an ilmenite NiMnO3, which delivers
high energy and power density (i.e., 65 W h kg−1 at 3200 W kg−1) and exhibits a good cycling stability
(i.e., around 96% after 5000 cycles at a current load of 240 mA g−1).

Keywords: hybrid supercapacitors; Ni/Mn oxides; hydroxides and phosphates; synergetic effect;
capacitance performance; alkaline electrolyte

1. Introduction

The elaboration of hybrid supercapacitors with improved energy density and cycling
stability is a current challenge that requires identification of the most suitable electrode
materials [1–4]. In this context, transitional metal oxides or hydroxides are considered as
attractive electrode materials due to their capability to store energy by different mecha-
nisms [1,5–10]. For example, MnO2 displays a classical pseudocapacitive mechanism based
on fast surface redox reactions with the participation of Mn3+ and Mn4+ ions [5,6], whereas
Ni(OH)2 is characterized by reversible electrochemical redox reactions with Ni2+/Ni3+ pair
which is concomitant with ion/molecule intercalation [7–10]. The electrochemical storage
mechanisms become more diverse when ternary metal oxides/hydroxides having multiple
oxidation states are used. According to A/B/O notation, ternary metal compounds can be
categorized mainly into three groups: AB2O4, ABO2/3/4 and A3B2O8 [11,12]. In compari-
son with MnO2, mixed nickel manganese oxide (NiMn2O4) stored in aqueous electrolytes
(e.g., 1 M Na2SO4), the vast majority of capacitance (91%) is by intercalation, and only
9% is by a capacitive mechanism [13]. The performance of oxides depends also on the
type of the crystal structure; it has been found that NiMnO3 with an ilmenite structure
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outperforms NiMn2O4 with a spinel structure [14]. The ratio between Ni and Mn is also of
importance [15,16]; the best capacitive properties have been established for Ni–Mn oxide
with Ni:Mn = 1:3. The replacement of oxides with hydroxides has a positive impact on
the electrochemical performance of mixed nickel manganese compounds [17,18]. Layered
double hydroxides (Ni–Mn LDH), as well as Ni–Mn LDH deposited on reduced graphene
oxide, exhibit high faradaic pseudocapacitance, which makes them attractive electrodes for
hybrid supercapacitors [12,17,18].

The improved storage performance of mixed Ni–Mn oxides/hydroxides is directly
related with the synergistic effect of Ni and Mn ions [19]. The next question is whether
the Ni/Mn effect is specific for oxides/hydroxides. In this context, phosphate compounds
represent an alternative towards oxides/hydroxides due to their stability in aqueous and
carbonate-based electrolytes [20]. Irrespective of this, intensive studies on phosphate-
based supercapacitors started in 2012 with NH4CoPO4.H2O [21,22]. Regarding alkaline
transition metal phosphates, the first report appeared in 2015, with the electrode being
lithium manganese phosphate, LiMnPO4, with an olivine-type structure [23,24]. It has
been found that nano-crystalline LiMnPO4 coated with a thick carbon layer delivers high
capacitance when lithium aqueous electrolytes (such as LiOH and Li2SO4) are used. This
phospho-olivine shows non-faradic behavior in neutral aqueous electrolytes, whereas in
alkaline electrolytes, the faradic kind of the capacitive profiles is more pronounced. Further-
more, the capacitive performance of the phospho-olivine is amplified when the composite
between LiMnPO4 and reduced graphene oxide aerogel is formed [25]. Like LiMnPO4,
nickel analogue LiNiPO4 stores electrochemical energy by faradaic and non-faradaic mech-
anisms [26]. Recently, it has been reported that sodium manganese and sodium nickel
phosphates (NaMnPO4 and NaNiPO4) have maricite structures that operate through the
same mechanisms in NaOH electrolytes; battery-like reversible redox processes are owed
to Mn2+/Mn3+ and Ni2+/Ni3+ redox pairs concomitant with adsorption/desorption reac-
tions at the electrode/electrolyte interface [27–29]. In neutral electrolytes, such as NaCl
and Na2SO4, however, the non-faradaic mechanism prevails [27]. The nickel compound
NaNiPO4 displays higher specific capacitance than the manganese one, NaMnPO4, with a
voltametric specific capacitance of 390 F g−1 vs. 219 F g−1 at a scan rate of 2 mV s−1 [27].
Mixed sodium manganese-nickel-cobalt phosphate (i.e., NaMn1/3Ni1/3Co1/3PO4) demon-
strates stable capacitive performance in hybrid supercapacitors irrespective of the kind used
electrolytes (i.e., 2 M NaOH solution and 1 M NaPF6 in EC/DEC/DMC) [30,31]. Regardless
of these few reports, the capacitive performance of phosphates is still far from that which is
desired. That is why the challenge is how to improve the capacitive performance of phosphates.

This study aims to quantify the synergistic effect of nickel and manganese ions on
the capacitive performance of oxide, hydroxide and phosphate electrodes in alkaline elec-
trolytes. For all electrodes, the ratio of Ni-to-Mn was selected to be one-to-one. Two types of
phosphate phases stable in alkaline media were selected: LiNi1/2Mn1/2PO4 with an olivine
structure and NaNi1/2Mn1/2PO4 with a maricite structure. As a measure of the phosphate
performance, mixed Ni–Mn oxides with ilmenite and spinel structures, as well as mixed
Ni–Mn hydroxides with layered structures, were used as references. For the phosphates
and hydroxides, Ni2+ and Mn2+ ions randomly occupied one crystallographic site, whereas
in the ilmenite oxide, a common face was shared by Ni2+ and Mn4+ ions (Figure 1).

The electrochemical parameters were evaluated in hybrid supercapacitor cells working
with alkaline electrolytes and activated carbon as a negative electrode [10]. The comparative
analysis of the phosphates and oxides/hydroxides is of significance to obtain insight into
the synergistic effect of nickel and manganese on the capacitive performance of electrodes.
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Figure 1. Schematic view of the crystal structures of mixed Ni–Mn phases: (a) β-Ni1/2Mn1/2(OH)2; (b) 
NiMnO3; (c) LiNi1/2Mn1/2PO4; and (d) NaNi1/2Mn1/2PO4. The structures are adopted from: β-Ni(OH)2 
(COD 9011314), ilmenite (ICSD 31853), phospho-olivine (COD 4002560) and maricite (COD 
1530437). 
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2 Ni–Mn oxide 
Thermal decomposition of hydroxides 
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Figure 1. Schematic view of the crystal structures of mixed Ni–Mn phases: (a) β-Ni1/2Mn1/2(OH)2;
(b) NiMnO3; (c) LiNi1/2Mn1/2PO4; and (d) NaNi1/2Mn1/2PO4. The structures are adopted from:
β-Ni(OH)2 (COD 9011314), ilmenite (ICSD 31853), phospho-olivine (COD 4002560) and maricite
(COD 1530437).

2. Results and Discussion

For the preparation of single phases containing both nickel and manganese, spe-
cific synthetic procedures were adopted. Table 1 summarizes all the experimental con-
ditions necessary for the synthesis of the given electrode, as well as its notation. Mixed
nickel-manganese hydroxide, Ni1/2Mn1/2(OH)2, is prepared by the co-precipitation of
a nickel-manganese aqueous solution with KOH. Interestingly, the kind of the used Ni
and Mn salts affects the composition of the precipitated hydroxides (Figure S1); single
Ni1/2Mn1/2(OH)2 phase, which is isostructural to the well-known β-Ni(OH)2 (Figure 1a,
ICSD 28101), is obtained only in the case when nickel and manganese nitrate salts are
used. The nickel and manganese sulfate salts yield a phase mixture between α- and β-type
NixMn1-x(OH)2, as well as individual Mn(OH)2 and β-Ni(OH)2 (Figure S1). In this study,
single β-Ni1/2Mn1/2(OH)2 phase was only tested as an electrode in a supercapacitor cell.
Contrary to the hydroxides, precipitation in the presence of CO2 leads to the formation of a
single carbonate phase, Ni1/2Mn1/2CO3, irrespective of the kind of the used nickel and man-
ganese salts. The common features of β-Ni1/2Mn1/2(OH)2 and Ni1/2Mn1/2CO3 are the random
distributions of Ni2+ and Mn2+ ions in hydroxide and carbonate crystal structures (Figure S1).

Table 1. Experimental conditions, preparation methods, phase compositions and labeling of the
studied hydroxides, oxides and phosphates.

Sample Description Preparation Method T, ◦C Annealing Time, hs Phase Composition Labeling

1 Ni–Mn hydroxide Co-precipitation from nitrate salts 25 - β-type Ni0.5Mn0.5(OH)2 N-OH

2 Ni–Mn oxide Thermal decomposition of hydroxides
prepared from nitrates 400 3 Mixture of ilmenite NiMnO3 and

spinel Ni1.5Mn1.5O4
IS-O

3 Ni–Mn oxide Thermal decomposition of
Ni1/2Mn1/2CO3

400 3 Single ilmenite NiMnO3 phase I-O

4 Li–Ni–Mn
phosphate Li–Ni–Mn phosphate-formate precursor 500 10 Single olivine phase

LiNi1/2Mn1/2PO4
LP

5 Na–Ni–Mn
phosphate Na–Ni–Mn phosphate-formate precursor 700 10 Single maricite phase

NaNi1/2Mn1/2PO4
NP
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Oxide electrodes are prepared by the thermal decomposition of the corresponding
carbonate and hydroxide phases (Figure S1, Table 1). Although thermal decomposition of
the carbonate phase, Ni1/2Mn1/2CO3, yields single NiMnO3 phase with an ilmenite type
of structure (Figure 1b, ICSD 31853), a mixture between oxide phases with ilmenite and
spinel structures (i.e., NiMnO3 and Ni1.5Mn1.5O4) is formed after the decomposition of a
single β-Ni1/2Mn1/2(OH)2 phase. As electrodes in a supercapacitor cell, NiMnO3 ilmenite
and an oxide mixture, “NiMnO3+Ni1.5Mn1.5O4”, are used.

The phosphate phases LiNi1/2Mn1/2PO4 and NaNi1/2Mn1/2PO4 are obtained from
the lithium and sodium phosphate-formate precursors. XRD patterns evidence that lithium
and sodium compounds crystallize in different types of structures, although the same syn-
thetic method (Figure S1): LiNi1/2Mn1/2PO4 adopts an olivine-type structure (Figure 1c),
whereas NaNi1/2Mn1/2PO4 crystallizes in a maricite-type structure (Figure 1d). The olivine-
and maricite-type structures are closely related to each other; they have the same PO4
framework but with a reverse distribution of M+ and M2+ ions over the two octahe-
dral sites (4a and 4c) [32,33]. It is of importance that Ni2+ and Mn2+ ions are randomly
distributed on the given octahedral positions in the two structures, as discussed in the
supporting information.

Specific surface area is another important factor contributing to the electrochemical
performance of materials [34,35]. Figure 2 compares the specific surface area for all the
samples. Hydroxides, oxides and phosphates are typical mesoporous materials (Figure 2).
For β-Ni0.5Mn0.5(OH)2 and its oxide-derived product (IS-O), the isotherms show character-
istic H1-type hysteresis loops associated with the narrow distribution of relatively uniform
cylindrical-like pores (Figure 2a,c) [36]. The calculated specific surface areas, total pore
volumes and pore size distributions are collected in Table 2. The hydroxides and oxides
have close porous characteristics with high specific surface areas (varying between 106 and
128 m2 g−1) and total pore volumes (i.e., varying between 0.25 and 0.35 cm3 g−1). However,
close inspection of the pore size distribution curves (Figure 2 and Table 2) reveals that
the mean pore size was slightly shifted after the thermal decomposition of the hydroxide
to an oxide (i.e., from 8 to 11 nm). This means that the H2O evolution from a hydroxide
caused an opening of pores in the mesopore range. The phosphates exhibited low specific
surface areas: 7 m2 g−1 for LiNi1/2Mn1/2PO4 and about 1 m2 g−1 for N37Ni1/2Mn1/2PO4
(Table 2). (For the sake of convenience, the isotherm of NaNi1/2Mn1/2PO4 is not shown
due to its lowest specific surface area.) For lithium compounds, the pores were distributed
in a broad range from 5 to 100 nm, with mesopores with sizes between 10 and 50 nm being
predominant. The different porosity of hydroxides/oxides and phosphates is related with
the preparation conditions; phosphates are prepared at higher temperatures using longer
heating times in comparison with oxides (Table 1).

Table 2. Specific surface area SBET, total pore volume Vt and pore size distribution for the studied
compounds.

Samples Detailed Description SBET, m2 g−1 Vt, cm3 g−1 Pore size Distribution, nm

N-OH β-Ni1/2Mn1/2(OH)2 117 0.25 Uniform narrow pore size distribution between 3
and 12 nm; mean pore size of 8 nm

I-O NiMnO3 128 0.35 Narrow pore size distribution between 3 and
12 nm; mean pore size of 10 nm

IS-O NiMnO3 +
Ni1.5Mn1.5O4

106 0.30 Uniform narrow pore size distribution between 3
and 18 nm; mean pore size of 11 nm

LP LiNi1/2Mn1/2PO4 7 0.04
Broad pore size distribution between 5 and
100 nm, with mesopores between 10 and 50 nm
being predominant

NP NaNi1/2Mn1/2PO4 ≈1 - -
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Figure 2. Adsorption–desorption isotherms of: (a) β-Ni1/2Mn1/2(OH)2; (b) ilmenite NiMnO3;
(c) mixture of NiMnO3 and Ni1.5Mn1.5O4; and (d) LiNi1/2Mn1/2PO4. Filled and open symbols de-
note adsorption and desorption curves, respectively. The insets show the pore size distribution curves.

In synchrony with the porosity, the morphology of the samples is also specific. The
morphology consisted of micrometric aggregates with various shapes (Figure 3). For
NiMnO3, spherical aggregates with sizes of around 1–5 µm dominated, whereas for
β-Ni1/2Mn1/2(OH)2 and its oxide-derivative, unshaped aggregates with sizes larger than
10 µm appeared. For NaNi1/2Mn1/2PO4, having a lower specific surface area, primary well-
shaped particles inside aggregates could be distinguished, with the particle dimensions
being of 0.4–0.8 µm. For LiNi1/2Mn1/2PO4, spherical aggregates were mostly observed.
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Figure 3. SEM images: (a) β-Ni1/2Mn1/2(OH)2; (b) ilmenite NiMnO3; (c) mixture of NiMnO3 and
Ni1.5Mn1.5O4; (d) olivine LiNi1/2Mn1/2PO4; and (e) maricite NaNi1/2Mn1/2PO4.
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All the samples used as positive electrodes in asymmetric electrochemical cells displayed
charge/discharge curves whose shapes are typical for supercapacitor behavior [5–9] (Figure 4).
The comparison shows that hydroxides, oxides and phosphates delivered different capaci-
tances, with the highest being for ilmenite I-O and the lowest being for olivine LP. This reflects
a current–resistance iR drop calculated from the discharge curve. I-O exhibited the lowest iR
drop (i.e., drop in voltage ∆V of 0.029 ± 0.002 V at 240 mA g−1), and the highest value was
calculated for LP (i.e., drop in voltage ∆V of 0.045 ± 0.002 V at 240 mA g−1).
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To more precisely compare the electrochemical performances of all the samples, two
experimental protocols are used. Firstly, the electrochemical cells are cycled at a constant
current load that increases stepwise from 30 to 900 mA g−1 for 25 cycles per each step
(Figure 5). Secondly, the electrochemical cells are tested at a current load of 240 mA g−1 for
5000 cycles (Figure 6). According to the first protocol, the highest capacitance is delivered
by the ilmenite oxide I-O regardless of the current load, with 175 F g−1 and 115 F g−1 at a
current load of 30 and 900 mA h g−1, respectively (Figure 5). The hydroxide N-OH displays
lower capacitance than that of the ilmenite oxide I-O at a low current load, whereas at high
current loads, the capacitances of hydroxides and oxides become comparable. This reveals
a better rate performance of the hydroxides in comparison with that of the oxides. To
understand the effect of the mixing of Ni and Mn, Figure 5 gives the capacitance behavior
of α,β-Ni(OH)2 reference, for which it has been shown to display the best performance
among nickel hydroxide modifications [9]. This comparison indicates high capacitance
values for mixed β-Ni1/2Mn1/2(OH)2 hydroxide at lower current loads, whereas at high
current loads, the capacitances of β-Ni1/2Mn1/2(OH)2 and α,β-Ni(OH)2 tend towards each
other. When a spinel oxide Ni1.5Mn1.5O4 is mixed with ilmenite oxide NiMnO3 (IS-O), there
is a decrease in the capacitance, thus indicating worse supercapacitor behavior of the spinel.
It is worth mentioning that the better performance of ilmenite NiMnO3 compared to that
of the spinel with a composition of NiMn2O4 has been previously established [14]. Given
that both oxides have close specific surface areas, the different capacitances disclose the
effect of crystal structures on the supercapacitor behavior of oxides. This is more evidence
for the complex features of energy storage for oxides, including capacitive and faradaic
mechanisms. That is why the energy storage of oxides is calculated and presented in
Figure 5 with units of F g−1 and mA h g−1.
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Figure 5. Specific discharge capacitance (a) and areal discharge capacitance (b) as a function of the
current load of supercapacitor cells with different composite electrodes. For the sake of comparison,
the discharge capacitance is also calculated in mA h g−1.
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Figure 6. (A) Specific discharge capacitance (capacity) as a function of the cycle number at 240 mA g−1

of supercapacitor cells with different composite electrodes. (B) Ex situ XRD patterns of ilmenite (b)
and phospho-olivine (d) electrodes after 5000 cycles. For the sake of comparison, the pristine ilmenite
(a) and phospho-olivine (c) are also given. Symbols (*), (PTFE), (C) and (Ni) denote the peaks due to
the ilmenite phase, PTFE, graphite and Ni foam, respectively.

The lowest capacitance was observed for the olivine LP, with 105 F g−1 and 90 F g−1 at
a current load of 30 and 900 mA h g−1, respectively. However, the olivine LP outperformed
the oxides and hydroxides with respect to the rate capability. Going from 30 to 900 mA g−1,
the capacitance loss was around 50 F g−1 for I-O and only 15 F g−1 for LP. Irrespective of
the lowest specific surface area, the maricite NP demonstrated a capacitance that was close
to that of the mixed oxide “ilmenite-spinel”. To outline the performance of maricite NP, the
discharge capacitance was calculated per specific surface area (Figure 5). According to this
scheme, the maricite NP delivered the highest areal capacitance, followed by the phospho-
olivine (Figure 5). On one hand, this illustrates the impact of the crystal structure on the
supercapacitor behavior of phosphates, which mimics that of the oxides. On the other hand,
the maricite NP may be of interest as an electrode material in hybrid supercapacitors if its
specific surface area is increased drastically.

The second protocol of electrochemical testing is based on an extended number of cy-
cles, and it enables the further differentiation of samples as electrode materials (Figure 6A).
After 5000 cycles, the ilmenite I-O delivered the highest capacitance (i.e., of around
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125 F g−1) and better cycling stability (i.e., around of 96%). The oxide mixture between
ilmenite and spinel underperforms the single ilmenite phase, thus supporting once again
the better capacitive performance of the ilmenite phase. The N-OH hydroxide is character-
ized by a slightly lower capacitance than that of ilmenite I-O (i.e., around of 115 F g−1), but
the cycling stability was worse (around 92%). It is noticeable that α,β-Ni(OH)2 reference,
having a lower capacitance than that of N-OH (113 versus 119 F g−1), displayed better
cycling stability (i.e., around 95%). In comparison with oxides and hydroxides, the perfor-
mance of the phosphate electrodes was worse; the capacitance was lower than 100 F g−1,
and the cycling stability tended to 92% regardless of the crystal structure (i.e., maricite or
olivine). It is of importance that the capacitances of mixed Ni–Mn phosphates are among
the highest values reported in the literature, in which single Mn and Ni phosphates are
mainly examined [23–29]. Moreover, single maricite phosphate NP and mixed ilmenite
and spinel oxides IS-O had comparable capacitances regardless of their different specific
surface areas (Table 2). The above data allow the outlining of two important features; the
capacitance depends mainly on whether the electrode simultaneously contains nickel and
manganese and, to a lesser extent, on the type of anionic constituents. On the other hand,
the cycling stability is a function of the morphology; it appears that better cycling stability
is achieved at spherical aggregates.

Cycling stability is directly associated with the chemical stability of electrodes in
alkaline electrolytes. For that reason, Figure 6B gives the ex situ XRD patterns of ilmenite
and phospho-olivine after 5000 cycles at 240 mA g−1. These electrodes were selected since
they exhibit the best and worst performances. As one can see, both XRD patterns remained
unchanged, thus indicating the chemical stability of the ilmenite and phospho-olivine
phases during cycling in alkaline electrolytes.

To rationalize the electrochemical performance of oxides, hydroxides and phosphates,
Figure 7 compares the relationship between energy density and power density. For the sake of
comparison, the data available in the literature are also given. At lower power densities, the
specific energy density decreases in following the order: I-O > N-OH~NP > α,β-Ni(OH)2 > LP,
whereas at a high power density, the specific energy of I-O, N-OH and >α,β-Ni(OH)2 becomes
close and higher than that of the phosphates. It is of importance that the ilmenite NiMnO3 still
displays a high energy density at the highest power density (i.e., 65 W h kg−1 at 3200 W kg−1).
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This can be related with the synergistic effect of Ni and Mn elements, as well as with
the specific morphology and texture of I-O. The capacitance performance of ilmenite I-O is
one of the good performances reported in literature (Figure 7). In comparison with ilmenite
I-O with a Ni-to-Mn ratio of one-to-one, composite Ni0.2Mn0.8Ox//Ni0.2Mn0.8Ox oxides
with a Ni-to-Mn ratio of one-to-four exhibit an energy density of around 38 W h kg−1

at 3800 W kg−1 power density, whereas the energy and the power density of Ni–Mn
oxide with a one-to-three ratio reach around 130 W h kg−1 at 1700 W kg−1 [23,26]. The
ilmenite NiMnO3 prepared by the hydrothermal method displays significantly lower
energy density (i.e., around 10 W h kg−1 at 700 W kg−1 [22]) than that of ilmenite NiMnO3
prepared by us using the co-precipitation method. Interestingly, the hydrothermal-derived
NiMnO3, having worse performance, is characterized by a low specific surface area (i.e.,
around 21 m2 g−1) and irregularly shaped particles with a size of 100–200 nm, whereas
co-precipitate-derived NiMnO3, having the best performance, possesses a high specific
surface area (around 125–130 m2 g−1) and spherical morphology. It is well recognized that
spherical morphology is an important factor contributing to the improved performance
of battery-like materials due to a higher volume-to-surface ratio of the electrode and
its better wetting with electrolytes [41]. Given that the energy storage mechanism of
Ni–Mn oxides in supercapacitors is more complex than the single capacitive and faradaic
one, it is not surprising that spherical morphology has a favorable effect in asymmetric
supercapacitors too.

Both LP and NP phosphates deliver lower specific energy densities than those of oxides
and hydroxides (Figure 7), with NP being slightly better than LP. Keeping a Ni-to-Mn ratio
of one-to -one, this implies, at first glance, that the capacitive performance of an electrode
depends further on the anionic constituents and on the type of structure. Considering that
the morphology of phosphates is not optimized, it appears that the phosphates are also
suitable for supercapacitor applications. Moreover, the energies and power densities of
the phosphates prepared by us, which simultaneously contained Ni and Mn, were more
than two times higher than those of phosphates containing one element, such as Ni or
Mn (Figure 7). This supports once again the leading effect of Ni and Mn elements on the
performance of electrodes in hybrid supercapacitors.

3. Conclusions

Three types of electrodes were evaluated in hybrid supercapacitor cells with alka-
line electrolytes: oxides with ilmenite and spinel structures, hydroxides isostructural to
β-Ni(OH)2 and phosphates with olivine and maricite structures. The common feature
between them is that their crystal structures are able to simultaneously accommodate nickel
and manganese ions. The capacitance performances of oxides, hydroxides and phosphates
depend mainly on whether the electrode contains simultaneously contains nickel and man-
ganese in a ratio of one-to-one and, to a lesser extent, on the type of anionic constituents.
Cycling stability becomes better when the morphology consists of spherical aggregates.
Based on these findings, one can predict the electrode with the best capacitance perfor-
mance; the electrode composition should simultaneously contain Ni and Mn ions, and the
morphology should comprise spherical aggregates. A proof-of-concept is demonstrated by
NiMnO3 with an ilmenite structure and optimized morphology; it delivers high energy and
power density (i.e., 65 W h kg−1 at 3200 W kg−1) and exhibits good cycling stability (i.e.,
around 96% after 5000 cycles at a current load of 240 mA g−1). The capacitive performance
of olivine and maricite phosphates outperforms the previously reported phosphates by
more than two times due to the synergistic effect of Ni2+ and Mn2+ ions. Further optimiza-
tion of phosphate morphology is needed in order to reach the capacitance performance of
NiMnO3 ilmenite.
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4. Material and Methods
4.1. Synthesis

The mixed Ni–Mn hydroxides were prepared via the classical co-precipitation method
from nickel and manganese salts (1:1 mole ratio) and KOH as a precipitant. Two kinds
of salts were used: nitrates and sulfates. The mixed Ni–Mn oxides were obtained by the
thermal decomposition of the following at 400 ◦C: (i) corresponding hydroxides; (ii) calcite-
type Ni1/2Mn1/2CO3 prepared by a co-precipitation from the nitrate salts with NaHCO3 in
a flow of CO2. For the synthesis of LiNi1/2Mn1/2PO4 and NaNi1/2Mn1/2PO4, we adopted
the phosphate-formate precursor method developed previously for the preparation of
electrochemically active LiMPO4 (M = Fe, Mn, Co, Ni) and NaMPO4 [32,33]. The synthetic
procedure consists of mixing aqueous solutions of Ni(HCOO)2.2H2O, Mn(HCOO)2.2H2O
and LiH2PO4, accordingly NaH2PO4, taken in a mole ratio of 1:1:2. The metal-phosphate-
formate solutions were frozen instantly with liquid nitrogen and subjected to freeze-drying
for about 18 h in vacuum (20–30 mbar) using an Alpha-Christ Freeze Dryer. Thus, the
obtained solid phosphate-formate precursors were pre-decomposed in an air atmosphere
at 350 ◦C for 4 h. The solid products were further annealed at temperatures between
500 and 700 ◦C.

4.2. Characterization Methods

The XRD patterns of the oxides/hydroxides and phosphates were recorded on a
Bruker D8 Advance diffractometer using CuKα radiation (LynxEye detector). The Ni and
Mn contents in the mixed composition were determined by inductively coupled plasma
atomic emission spectrometry (ICP-AES). The morphology of the electrode materials was
examined by JEOL JSM-5510 SEM. The porous texture of the samples was studied by
low-temperature (77.4 K) nitrogen adsorption using the Quantachrome (Boynton Beach, FL,
USA) NOVA 1200e instrument. The specific surface area was evaluated by the BET method
at a relative pressure p/po in a range of 0.10–0.30. The total pore volume was calculated
according to Gurwitsch’s rule at p/po = 0.99. The pore size distribution was estimated by
using the Barett–Joyner–Halenda method.

4.3. Electrochemical Characterization

Two-electrode cells were used to monitor the electrochemical performances of the
electrodes. The cell was constructed from a positive electrode (consisting of a mixture
between activated carbon (AC) and oxides/hydroxides in a content of 25 wt.%) and a
negative electrode (containing only AC) with the mass ratio between them being 1:1. As a
binder and a conductive additive, we used polytetraflourethylene (PTFE) (10 wt.%) and
graphite ABG 1005 EG1 (10 wt.%). The electrolyte contained 7 M KOH solutions with
additives of 35 g l-1 LiOH. The charge–discharge curves were recorded on the Arbin
Instrument System BT-2000. The capacitance (F g-1) was calculated from the charge–
discharge curves using the following equations [42,43]:

C = (I × ∆t)/(m × ∆V) (1)

where I (A), ∆t (s), m (g) and ∆V (V) are the discharge current, discharge time, mass of the
active material and voltage window, respectively. Based on the capacitance, the energy
densities (E, W h kg−1) and power densities (P, W kg−1)) were calculated as [44]:

E = C ∆V2/2 (2)

P = E × 3600/t (3)
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hydroxides, oxides and phosphates. References [27,32,33,45–47] are cited in the supplementary materials.
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